Tutorial:
Basic calibrations for solid state NMR experiments of membrane proteins

BTRC, 2014
Useful calibrations in protein solid state NMR

1. Referencing 1H, 15N, 13C and 31P

2. Basic VT calibration

3. Determination of frictional heating inside an MAS sample

4. Determination of power deposition on an NMR sample (static or MAS experiments)
1. Useful samples for referencing

- 15N ammonium sulfate, i.e., AMS (external reference). Set 15N resonance at 26.8 ppm.

- Adamantane, natural abundance (external reference). Set 13C high-frequency methylene resonance at 38.5 ppm.

- DSS in deuterated water. Set the DSS resonance to 0 ppm, use to verify 1H chemical shift of HDO (internal reference for water) and, indirectly, 13C chemical shifts ($v_0^C=0.251449530^* v_0^H$).

- H_2O (internal reference) in fully hydrated samples. Set at 4.76 ppm at 298 K. Chemical shift decreases by ~0.1 ppm for 10 K increase.

- Pure H_3PO_4 (internal reference). Set isotropic 31P resonance at 0 ppm.

NOTE: With external references, an effort should be made so that the reference volume and NMR tube/rotor are as close as possible to those of the actual sample, to avoid susceptibility effects.
Further reading on NMR referencing

2. How to calibrate a variable temperature (VT) unit

Temperature is an important parameter for magnetic alignment, protein rotational diffusion and other dynamics. The variable temperature unit can be easily calibrated by 1H NMR.

- Prepare a sample of 100% ethylene glycol (273-416K) or 100% methanol (178-330K).
- Equilibrate the sample in the spectrometer (~10min)
- Record 1H NMR spectra at different VT settings.
- Use the 1H chemical shift difference Δ (ppm) between methylene/methyl and hydroxyl peaks to determine the actual temperature:

$$T \text{ (K)} = 466.5 - 102\times \Delta \quad \text{(ethylene glycol)}$$
$$T \text{ (K)} = 409 - 36.54\times \Delta - (21.85\times(\Delta^2)) \quad \text{(methanol)}$$

- Plot actual vs nominal (VT) temperatures to determine the correction for a specific VT unit.
Useful resources on temperature standards

• Online NMR temperature calculator:
 http://www.spectroscopynow.com/userfiles/sepspec/file/specNOW/HTML%20files/NMR_temperature_measurement.htm
3. Frictional heating in hydrated MAS samples

- Knowledge of the actual sample temperature is important for rotationally aligned (RA) solid state NMR, and in any experiment where protein and/or lipid dynamics is important.
- Spinning liposome or other aqueous protein samples in an MAS experiment increases the inner sample temperature by frictional heating.
- Frictional heating depends on the MAS rate.
- Sample frictional heating can be dependent on chiller setting/air flow rate. A note should be made of these parameters.
- Using VT control, the sample temperature is well equilibrated in 10 minutes.
- The 1H H$_2$O resonance inside the sample can be monitored to verify the actual temperature changes in the sample.
Example: frictional heating in a 3.2 mm Bruker rotor (900MHz Low-E HCN probe, BTRC)

Gas flow: 1200 lph
\[y = 1.1049x - 2.5399 \]
\[R^2 = 0.99954 \]

Sample: Ethylene-glycol, verified on H\textsubscript{2}O resonance in biological sample
4. Determination of the power deposition in an NMR sample

- Power deposition during an NMR experiment can be significant in a hydrated biological sample, i.e., a “lossy” sample, and it is strongly probe/coil dependent.

- Lossy samples can be approximated by a 70 mM NaCl aqueous solution.

- 1H chemical shifts in Na$_5$[TmDOTP] are used for fast and precise measurements of RF heating (see Zuo et al in references).
How to measure RF heating

- Sample: 20 mM Na₅[TmDOTP] / 70 mM NaCl / D₂O

Na₅[TmDOTP]:
- Biocompatible
- Versatile: ¹H, ³¹P, ²³Na
- Paramagnetic: short recycle delay (d₁ < 500 ms)
- Can be also used to measure pH, ions, etc…
- Cost effective: <100$/gram from Macrocyclics (TX)

- Calibration curve: measure ¹H shift(s) of Na₅[TmDOTP] vs sample temperature in a VT-regulated 1-pulse experiment.
How to measure RF heating

A typical experiment to determine RF heating due to 1H irradiation:

```
  RF on
  p
  90°
  Acquire
  d1
  n times = 8 min
```

“Average” RF = $B_1^2 \times \text{Duty Factor} =$

\[= B_1^2 \times \left[\text{time RF on} / \text{time RF off} \right]\]

where B_1 is in kHz
Further reading of RF heating and uses of $\text{Na}_5[\text{TmDOTP}]$

- Macrocyclics, TX: https://macrocyclics.com